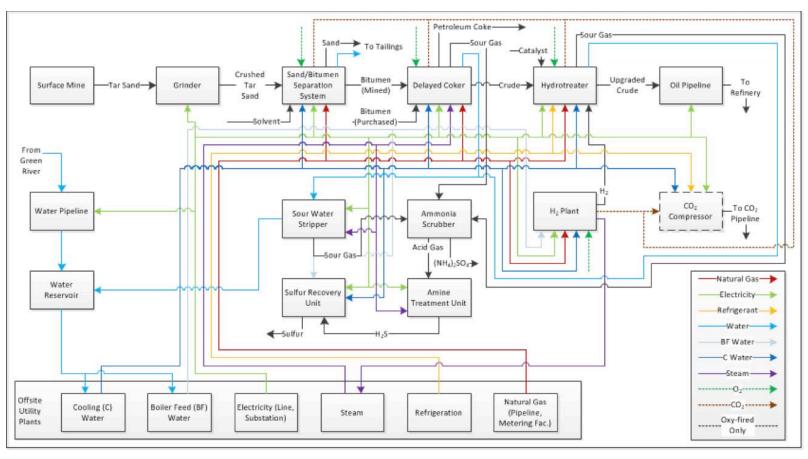


An Example - Market Assessment of Unconventional Fuel Resources in Utah

- No commercial scale production of U.S. oil sands.
 What are development hurdles that exist (policy, environmental, technological, financial)?
- Market Assessment is the result. It covers:
 - Fiscal systems for securing a fair return: (1) determination of value of unconventional oil resource, & (2) policy instruments available for realizing that value. Alberta royalty regime as an example of a public policy tool.
 - ➡ Diverse public costs (externalities) associated with unconventional fuel development; public perception of cost can impact feasibility of development as much or more than actual cost and may not correlate to measurable scope of that cost.
 - Arguments in favor of development: (I) "Energy security" resulting from increased domestic production; (2)
 Unconventional fuel development will benefit U.S. in terms of job opportunities
 - ➡ Water uses & availability, land use impacts, air quality. carbon management
 - Four development scenarios

Scope of Assessment Scenarios shale Washakie Basin Ex Situ Oil Sands Ex Situ Oil Shale

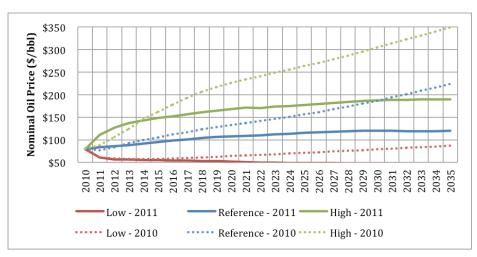

n Situ Oil Sands

- Report on profitability of 4 potential development projects: 50,000 BPD for oil shale; 10,000 BPD for oil sands; WTI-equivalent product; air- & oxyfired; 4 years to design/build, 2 years ramp up to full production, 18 years of full production
 - Ex situ extraction (underground mining, surface retort) of oil shale
 - In situ extraction (conduction heating) of oil
 - Ex situ extraction (surface mining, surface processing) of oil sands
 - In situ extraction (SAGD) of oil sands
- Estimating costs for extracting, upgrading, and transporting these resources to market (refinery)
 - Applying same costing methodology to all scenarios
 - Itemizing all costs for each process
 - Investigating uncertainty associated with inputs & assumptions for each scenario & reporting impact on economic viability

Ex Situ Oil Sands Production Process Overview

Assume that mine on Asphalt Ridge can produce enough material to support 10,000 BPD operation. Mine is 7.4 km long, 300 m wide, oil sands layer is 18.3 m thick at a down dip angle of 12°. Mine to stripping ratio of 4:1. Bitumen content of sands is 10 wt%.

Water Requirements

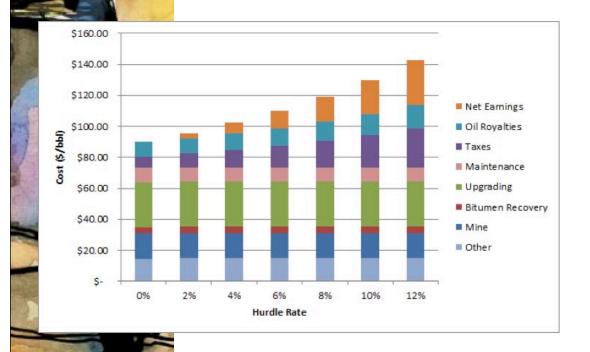

Category	Item	Water (bbl / bbl of oil)		Water (acre-ft/yr)	
		Air-Fired	Oxy-Fired	Air-Fired	Oxy-Fired
Neutral	Cooling Water		3000		1000
	Hydrotreater	0.12	0.12	54.70	54.70
	H2 Plant	1.07	1.07	502.16	502.16
	Extraction	0.21	0.21	-	8,856.38
	Delayed Coker	0.02	0.02	32.54	32.54
	CO2 Compressor	9	18.82	2	8,856.38
	Sulfur Recovery Unit	0.07	0.07	32.54	32.54
	Boiler Feed Water				
	Sulfur Recovery Unit	0.01	0.01	4.88	4.88
	Subtotal	1.50	20.32	626.81	18,339.58
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Consumed	H2 Plant	0.38	0.38	178.65	178.65
	Tailings/Sand	1.04	1.04	487.45	487.45
	Subtotal	1.42	1.42	666.10	666.10
Generated	CO2 Compressor	-	0.54	-	254.32
	Subtotal	- 1	0.54	-	254.32
Recycled	Recycle losses	0.06	0.62	26.48	292.17
	Subtotal (Neutral - Losses)	1.44	19.70	600.33	18,047.41
Water In		1.47	1.50	692.58	703.95

- Each part of oil sands production process generates water, consumes water, or is water neutral.
- Water losses include evaporation in cooling towers, moisture in sand tailings, consumption for H₂ production.
- Volume of water required for one-time filling of tanks for startup not included

Measures of Profitability

 Discounted cash flow analysis (function of discount factor & annual cash flow)

$$\rightarrow$$
 $NPV = \sum_{k=1}^{n} f_n CF_n$ where $f_n = \frac{1}{(1+r_d)^n}$


- Supply Price Method
 - Minimum constant dollar price per barrel of oil to ensure a profitable project; real fixed price that results in NPV = 0
 - Includes all usual costs (capital expenditures, operating costs, royalties, taxes, etc.) plus a necessarily & sufficiently attractive return on investment (normal profit or hurdle rate)
- Net Present Value Method
 - Specify an oil price forecast & hurdle rate, calculate NPV
 - Negative NPV = operation not profitable
 - Positive NPV = profitable operation.

Profitability Analysis

Supply Price Method

NPV Method

ı	Hurdle	EIA Price Forecast						
ı	Rate	Low		Reference		High		
	0.0%	\$	(1.75)	\$	1.09	\$	3.33	
ı	2.0%	\$	(1.47)	\$.67	\$	2.36	
ı	4.0%	\$	(1.27)	\$.37	\$	1.67	
ı	6.0%	\$	(1.13)	\$.15	\$	1.17	
ı	7.9%	\$	(1.02)	\$	-	\$.82	
ı	8.0%	\$	(1.02)	\$	(.01)	\$.80	
ı	10.0%	\$	(.93)	\$	(.12)	\$.53	
	12.0%	\$	(.87)	\$	(.21)	\$.32	
	16.9%	\$	(.76)	\$	(.34)	\$	-	

